499 research outputs found

    Page rank versus katz: is the centrality algorithm choice relevant to measure user influence in Twitter?

    Get PDF
    Microblogs, such as Twitter, have become an important socio-political analysis tool. One of the most important tasks in such analysis is the detection of relevant actors within a given topic through data mining, i.e., identifying who are the most influential participants discussing the topic. Even if there is no gold standard for such task, the adequacy of graph based centrality tools such as PageRank and Katz is well documented. In this paper, we present a case study based on a "London Riots'' Twitter database, where we show that Katz is not as adequate for the task of important actors detection since it fails to detect what we refer to as "indirect gloating'', the situation where an actor capitalizes on other actors referring to him.info:eu-repo/semantics/acceptedVersio

    Supramolecular associations between atypical oxidative phosphorylation complexes of Euglena gracilis

    Get PDF
    In vivo associations of respiratory complexes forming higher supramolecular structures are generally accepted nowadays. Supercomplexes (SC) built by complexes I, III and IV and the so-called respirasome (I/III2/IV) have been described in mitochondria from several model organisms (yeasts, mammals and green plants), but information is scarce in other lineages. Here we studied the supramolecular associations between the complexes I, III, IV and V from the secondary photosynthetic flagellate Euglena gracilis with an approach that involves the extraction with several mild detergents followed by native electrophoresis. Despite the presence of atypical subunit composition and additional structural domains described in Euglena complexes I, IV and V, canonical associations into III2/IV, III2/IV2 SCs and I/III2/IV respirasome were observed together with two oligomeric forms of the ATP synthase (V2 and V4). Among them, III2/IV SC could be observed by electron microscopy. The respirasome was further purified by two-step liquid chromatography and showed in-vitro oxygen consumption independent of the addition of external cytochrome c

    Machine-assisted Cyber Threat Analysis using Conceptual Knowledge Discovery

    Get PDF
    Over the last years, computer networks have evolved into highly dynamic and interconnected environments, involving multiple heterogeneous devices and providing a myriad of services on top of them. This complex landscape has made it extremely difficult for security administrators to keep accurate and be effective in protecting their systems against cyber threats. In this paper, we describe our vision and scientific posture on how artificial intelligence techniques and a smart use of security knowledge may assist system administrators in better defending their networks. To that end, we put forward a research roadmap involving three complimentary axes, namely, (I) the use of FCA-based mechanisms for managing configuration vulnerabilities, (II) the exploitation of knowledge representation techniques for automated security reasoning, and (III) the design of a cyber threat intelligence mechanism as a CKDD process. Then, we describe a machine-assisted process for cyber threat analysis which provides a holistic perspective of how these three research axes are integrated together

    Low X-Ray Luminosity Galaxy Clusters: Main goals, sample selection, photometric and spectroscopic observations

    Get PDF
    We present the study of nineteen low X-ray luminosity galaxy clusters (LX∼_X \sim 0.5--45 ×\times 104310^{43} erg s−1^{-1}), selected from the ROSAT Position Sensitive Proportional Counters (PSPC) Pointed Observations (Vikhlinin et al. 1998) and the revised version of Mullis et al. (2003) in the redshift range of 0.16 to 0.7. This is the introductory paper of a series presenting the sample selection, photometric and spectroscopic observations and data reduction. Photometric data in different passbands were taken for eight galaxy clusters at Las Campanas Observatory; three clusters at Cerro Tololo Interamerican Observatory; and eight clusters at the Gemini Observatory. Spectroscopic data were collected for only four galaxy clusters using Gemini telescopes. With the photometry, the galaxies were defined based on the star-galaxy separation taking into account photometric parameters. For each galaxy cluster, the catalogues contain the PSF and aperture magnitudes of galaxies within the 90\% completeness limit. They are used together with structural parameters to study the galaxy morphology and to estimate photometric redshifts. With the spectroscopy, the derived galaxy velocity dispersion of our clusters ranged from 507 km~s−1^{-1} for [VMF98]022 to 775 km~s−1^{-1} for [VMF98]097 with signs of substructure. Cluster membership has been extensively discussed taking into account spectroscopic and photometric redshift estimates. In this sense, members are the galaxies within a projected radius of 0.75 Mpc from the X-ray mission peak and with cluster centric velocities smaller than the cluster velocity dispersion or 6000 km~s−1^{-1}, respectively. These results will be used in forthcoming papers to study, among the main topics, the red cluster sequence, blue cloud and green populations; the galaxy luminosity function and cluster dynamics.Comment: 13 pages, 6 tables, 9 figures. Uses emulateapj. Accepted for publication in The Astronomical Journal. Some formatting errors fixe

    Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS) I. Detection of hot neutral sodium at high altitudes on WASP-49b

    Get PDF
    High-resolution optical spectroscopy during the transit of HD 189733b, a prototypical hot Jupiter, allowed the resolution of the Na I D sodium lines in the planet, giving access to the extreme conditions of the planet upper atmosphere. We have undertaken HEARTS, a spectroscopic survey of exoplanet upper atmospheres, to perform a comparative study of hot gas giants and determine how stellar irradiation affect them. Here, we report on the first HEARTS observations of the hot Saturn-mass planet WASP-49b. We observed the planet with the HARPS high-resolution spectrograph at ESO 3.6m telescope. We collected 126 spectra of WASP-49, covering three transits of WASP-49b. We analyzed and modeled the planet transit spectrum, while paying particular attention to the treatment of potentially spurious signals of stellar origin. We spectrally resolve the Na I D lines in the planet atmosphere and show that these signatures are unlikely to arise from stellar contamination. The large contrasts of 2.0±0.5%2.0\pm0.5\% (D2_2) and 1.8±0.7%1.8\pm0.7\% (D1_1) require the presence of hot neutral sodium (2,950−500+4002,950^{+400}_{-500} K) at high altitudes (∼\sim1.5 planet radius or ∼\sim45,000 km). From estimating the cloudiness index of WASP-49b, we determine its atmosphere to be cloud free at the altitudes probed by the sodium lines. WASP-49b is close to the border of the evaporation desert and exhibits an enhanced thermospheric signature with respect to a farther-away planet such as HD 189733b.Comment: Accepted for publication in A&A. 14 page

    Atmospheric characterization of Proxima b by coupling the Sphere high-contrast imager to the Espresso spectrograph

    Get PDF
    Context. The temperate Earth-mass planet Proxima b is the closest exoplanet to Earth and represents what may be our best ever opportunity to search for life outside the Solar System. Aims. We aim at directly detecting Proxima b and characterizing its atmosphere by spatially resolving the planet and obtaining high-resolution reflected-light spectra. Methods. We propose to develop a coupling interface between the SPHERE high-contrast imager and the new ESPRESSO spectrograph, both installed at ESO VLT. The angular separation of 37 mas between Proxima b and its host star requires the use of visible wavelengths to spatially resolve the planet on a 8.2-m telescope. At an estimated planet-to-star contrast of ~10^-7 in reflected light, Proxima b is extremely challenging to detect with SPHERE alone. However, the combination of a ~10^3-10^4 contrast enhancement from SPHERE to the high spectral resolution of ESPRESSO can reveal the planetary spectral features and disentangle them from the stellar ones. Results. We find that significant but realistic upgrades to SPHERE and ESPRESSO would enable a 5-sigma detection of the planet and yield a measurement of its true mass and albedo in 20-40 nights of telescope time, assuming an Earth-like atmospheric composition. Moreover, it will be possible to probe the O2 bands at 627, 686 and 760 nm, the water vapour band at 717 nm, and the methane band at 715 nm. In particular, a 3.6-sigma detection of O2 could be made in about 60 nights of telescope time. Those would need to be spread over 3 years considering optimal observability conditions for the planet. Conclusions. The very existence of Proxima b and the SPHERE-ESPRESSO synergy represent a unique opportunity to detect biosignatures on an exoplanet in the near future. It is also a crucial pathfinder experiment for the development of Extremely Large Telescopes and their instruments (abridged).Comment: 16 pages, 7 figures, revised version accepted to A&
    • …
    corecore